1,160 research outputs found

    Pre-Congestion Notification Encoding Comparison

    Get PDF
    DiffServ mechanisms have been developed to support Quality of Service (QoS). However, the level of assurance that can be provided with DiffServ without substantial over-provisioning is limited. Pre-Congestion Notification (PCN) investigates the use of per-flow admission control to provide the required service guarantees for the admitted traffic. While admission control will protect the QoS under\ud normal operating conditions, an additional flow termination mechanism is necessary in the times of heavy congestion (e.g. caused by route changes due to link or node failure).\ud Encoding and their transport are required to carry the congestion and pre-congestion information from the congestion and pre-congestion points to the decision points. This document provides a survey of\ud several encoding methods, using comparisons amongst them as a way to explain their strengths and weaknesses.\u

    Taxonomy of P2P Applications

    Get PDF
    Peer-to-peer (p2p) networks have gained immense popularity in recent years and the number of services they provide continuously rises. Where p2p-networks were formerly known as file-sharing networks, p2p is now also used for services like VoIP and IPTV. With so many different p2p applications and services the need for a taxonomy framework rises. This paper describes the available p2p applications grouped by the services they provide. A taxonomy framework is proposed to classify old and recent p2p applications based on their characteristics

    Cloud computing services: taxonomy and comparison

    Get PDF
    Cloud computing is a highly discussed topic in the technical and economic world, and many of the big players of the software industry have entered the development of cloud services. Several companies what to explore the possibilities and benefits of incorporating such cloud computing services in their business, as well as the possibilities to offer own cloud services. However, with the amount of cloud computing services increasing quickly, the need for a taxonomy framework rises. This paper examines the available cloud computing services and identifies and explains their main characteristics. Next, this paper organizes these characteristics and proposes a tree-structured taxonomy. This taxonomy allows quick classifications of the different cloud computing services and makes it easier to compare them. Based on existing taxonomies, this taxonomy provides more detailed characteristics and hierarchies. Additionally, the taxonomy offers a common terminology and baseline information for easy communication. Finally, the taxonomy is explained and verified using existing cloud services as examples

    RMD (Resource Management in Diffserv) QoS-NSLP model

    Get PDF
    This draft describes a local QoS model, denoted as Resource Management in Diffserv (RMD) QoS model, for NSIS that extends the IETF Differentiated Services (Diffserv) architecture with a scalable admission control and resource reservation concept. The specification of this QoS model includes a description of its QoS parameter information, as well as how that information should be treated or interpreted in the network

    LC-PCN: The Load Control PCN Solution

    Get PDF
    There is an increased interest of simple and scalable resource provisioning solution for Diffserv network. The Load Control PCN (LC-PCN) addresses the following issues:\ud o Admission Control for real time data flows in stateless Diffserv Domains\ud o Flow Termination: Termination of flows in case of exceptional events, such as severe congestion after re-routing.\ud Admission control in a Diffserv stateless domain is a combination of:\ud o Probing, whereby a probe packet is sent along the forwarding path in a network to determine whether a flow can be admitted based upon the current congestion state of the network\ud o Admission Control based on data marking, whereby in congestion situations the data packets are marked to notify the PCN-egress-node that a congestion occurred on a particular PCN-ingress-node to PCN-egress-node path.\ud \ud The scheme provides the capability of controlling the traffic load in the network without requiring signaling or any per-flow processing in the PCN-interior-nodes. The complexity of Load Control is kept to a minimum to make implementation simple.\u

    AAA architectures applied in multi-domain IMS (IP multimedia subsystem)

    Get PDF
    There is a group of communication services that use\ud resources from multiple domains in order to deliver their service.\ud Authorization of the end-user is important for such services,\ud because several domains are involved. There are no current\ud solutions for delivering authentication, authorization and\ud accounting (AAA) to multi-domain services. In our study we\ud present two architectures for the delivery of AAA to such\ud services. The architectures are analyzed on their qualitative\ud aspects. A result of this analysis is that direct interconnection of\ud AAA servers is an effective architectural solution. In current\ud multi-domain IP Multimedia Subsystem (IMS) architectures,\ud direct interconnection of AAA servers, such as the Home\ud Subscriber Servers (HSS), is not yet possible. In this paper we\ud argue and recommend to extend the IMS specification by adding\ud a new interface to HSS in order to support the direct\ud interconnection of HSS/AAA servers located in different IMS\ud administrative domains

    RMD-QOSM: The NSIS Quality-of-Service Model for Resource Management in Diffserv

    Get PDF
    This document describes a Next Steps in Signaling (NSIS) Quality-of- Service (QoS) Model for networks that use the Resource Management in Diffserv (RMD) concept. RMD is a technique for adding admission control and preemption function to Differentiated Services (Diffserv) networks. The RMD QoS Model allows devices external to the RMD network to signal reservation requests to Edge nodes in the RMD network. The RMD Ingress Edge nodes classify the incoming flows into traffic classes and signals resource requests for the corresponding traffic class along the data path to the Egress Edge nodes for each flow. Egress nodes reconstitute the original requests and continue forwarding them along the data path towards the final destination. In addition, RMD defines notification functions to indicate overload situations within the domain to the Edge nodes

    Bayesian analysis of multifidelity computer models with local features and non-nested experimental designs: Application to the WRF model

    Get PDF
    Motivated by a multi-fidelity Weather Research and Forecasting (WRF) climate model application where the available simulations are not generated based on hierarchically nested experimental design, we develop a new co-kriging procedure called Augmented Bayesian Treed Co-Kriging. The proposed procedure extends the scope of co-kriging in two major ways. We introduce a binary treed partition latent process in the multifidelity setting to account for non-stationary and potential discontinuities in the model outputs at different fidelity levels. Moreover, we introduce an efficient imputation mechanism which allows the practical implementation of co-kriging when the experimental design is non-hierarchically nested by enabling the specification of semi-conjugate priors. Our imputation strategy allows the design of an efficient RJ-MCMC implementation that involves collapsed blocks and direct simulation from conditional distributions. We develop the Monte Carlo recursive emulator which provides a Monte Carlo proxy for the full predictive distribution of the model output at each fidelity level, in a computationally feasible manner. The performance of our method is demonstrated on benchmark examples and used for the analysis of a large-scale climate modeling application which involves the WRF model
    • 

    corecore